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Abstract
Food	web	structure	and	dynamics	depend	on	relationships	between	body	sizes	of	
predators	and	their	prey.	Species‐based	and	community‐wide	estimates	of	preferred	
and	realized	predator–prey	mass	ratios	(PPMR)	are	required	inputs	to	size‐based	size	
spectrum	models	of	marine	communities,	food	webs,	and	ecosystems.	Here,	we	clar‐
ify	differences	between	PPMR	definitions	in	different	size	spectrum	models,	in	par‐
ticular	 differences	 between	 PPMR	 measurements	 weighting	 prey	 abundance	 in	
individual	predators	by	biomass	(rbio)	and	numbers	(rnum).	We	argue	that	the	former	
weighting	generates	PPMR	as	usually	conceptualized	in	equilibrium	(static)	size	spec‐
trum	models	while	the	latter	usually	applies	to	dynamic	models.	We	use	diet	informa‐
tion	from	170,689	individuals	of	34	species	of	fish	in	Alaskan	marine	ecosystems	to	
calculate	both	PPMR	metrics.	Using	hierarchical	models,	we	examine	how	explained	
variance	in	these	metrics	changed	with	predator	body	size,	predator	taxonomic	reso‐
lution,	 and	 spatial	 resolution.	 In	 the	hierarchical	 analysis,	 variance	 in	both	metrics	
emerged	primarily	at	the	species	level	and	substantially	less	variance	was	associated	
with	 other	 (higher)	 taxonomic	 levels	 or	with	 spatial	 resolution.	 This	 suggests	 that	
changes	in	species	composition	are	the	main	drivers	of	community‐wide	mean	PPMR.	
At	all	levels	of	analysis,	relationships	between	weighted	mean	rbio	or	weighted	mean	
rnum	and	predator	mass	tended	to	be	dome‐shaped.	Weighted	mean	rnum	values,	for	
species	and	community‐wide,	were	approximately	an	order	of	magnitude	higher	than	
weighted	mean	 rbio,	 reflecting	 the	 consistent	 numeric	 dominance	 of	 small	 prey	 in	
predator	 diets.	 As	 well	 as	 increasing	 understanding	 of	 the	 drivers	 of	 variation	 in	
PPMR	and	providing	estimates	of	PPMR	in	the	north	Pacific	Ocean,	our	results	dem‐
onstrate	that	that	rbio or rnum,	as	well	as	their	corresponding	weighted	means	for	any	
defined	group	of	predators,	are	not	directly	substitutable.	When	developing	equilib‐
rium	 size‐based	models	 based	 on	 bulk	 energy	 flux	 or	 comparing	 PPMR	estimates	
derived	from	the	relationship	between	body	mass	and	trophic	level	with	those	based	
on	diet	analysis,	weighted	mean	rbio	is	a	more	appropriate	measure	of	PPMR.	When	
calibrating	preference	PPMR	in	dynamic	size	spectrum	models	then	weighted	mean	
rnum	will	be	a	more	appropriate	measure	of	PPMR.
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1  | INTRODUC TION

Body	size	is	the	principle	factor	structuring	biomass,	numerical	abun‐
dances,	trophic	levels,	and	predator–prey	interactions	in	marine	and	
freshwater	 ecosystems	 (Dickie,	 Kerr,	 &	 Boudreau,	 1987;	 Trebilco,	
Baum,	Salomon,	&	Dulvy,	2013).	 In	most	 instances,	predators	feed	
on	 smaller‐bodied	 prey	 (Barnes,	 Maxwell,	 Reuman,	 &	 Jennings,	
2010;	Brose,	Jonsson,	et	al.,	2006;	Cohen,	Pimm,	Yodzis,	&	Saldana,	
1993).	 Predator‐to‐prey	 body	 mass	 ratios	 (PPMR)	 are	 particularly	
relevant	 for	 understanding	 regularities	 in	 the	 size	 structuring	 of	
predator–prey	interactions	in	food	webs	and	can	vary	based	on	indi‐
vidual‐	or	species‐level	attributes	of	predators	(Barnes	et	al.,	2010;	
Brose,	 Jonsson,	 et	 al.,	 2006;	 Nakazawa,	 Ushio,	 &	 Kondoh,	 2011;	
Reum	&	Hunsicker,	2012).	Importantly,	food	web	structure	and	dy‐
namics,	 as	 represented	 in	a	variety	of	 size‐based	modeling	 frame‐
works,	are	sensitive	to	the	PPMR	of	predators	(e.g.,	Brose,	Williams,	
&	Martinez,	2006;	Law,	Plank,	&	Kolding,	2016;	Otto,	Rall,	&	Brose,	
2007),	which	suggests	PPMR	offers	a	useful	metric	for	functionally	
characterizing	predators.

Size	spectra	describe	the	abundance	of	individuals	in	a	food	web	
as	a	function	of	body	size	(Sheldon,	Prakash,	&	Sutcliffe,	1972).	The	
first	 size	 spectrum	models	were	 developed	 to	 explain	 remarkably	
consistent	size	spectra	slopes	 in	pelagic	food	webs	(Sheldon	et	al.,	
1972;	Sprules	&	Barth,	2015),	with	recent	extensions	developed	to	
investigate	 human	 and	 environmental	 impacts	 on	 marine	 ecosys‐
tems	 (e.g.,	Blanchard	et	 al.,	 2014;	 Jacobsen,	Burgess,	&	Andersen,	
2017;	Jennings	&	Blanchard,	2004;	Jennings	&	Collingridge,	2015;	
Rochet	&	Benoît,	2012).	Broadly,	 size	spectrum	models	can	be	di‐
vided	according	to	whether	they	provide	equilibrium	(static)	predic‐
tions	of	size	spectra	or	model	system	processes	and	size	distributions	
dynamically	(Blanchard,	Heneghan,	Everett,	Trebilco,	&	Richardson,	
2017).	 The	 two	 approaches,	 however,	 conceptualize	 PPMR	differ‐
ently,	 with	 implications	 for	 how	 PPMR	 should	 be	 calculated	 from	
empirical	diet	data.

A	central	premise	in	all	size	spectrum	models	is	that	the	size	of	
prey	 consumed	 is	 linked	 to	 the	 size	of	predators,	 although	 specif‐
ics	of	 implementation	vary	among	models	 (Andersen,	 Jacobsen,	&	
Farnsworth,	2016;	Blanchard	et	al.,	2017;	Guiet,	Poggiale,	&	Maury,	
2016).	In	dynamic	size	spectrum	models,	predation	is	modeled	mech‐
anistically	and	within	a	given	time	increment	is	either	fully	or	partly	a	
function	of	prey	densities	and	the	prey	size	preference	of	the	preda‐
tor	(Benoît	&	Rochet,	2004;	Hartvig,	Andersen,	&	Beyer,	2011).	Prey	
size	preferences	are	usually	modeled	using	a	log‐normal	selectivity	
function,	or	feeding	kernel	(Andersen	et	al.,	2016).	Prey	mass	at	the	
peak	of	the	feeding	kernel	is	defined	by	a	“preferred	PPMR”	param‐
eter,	which	reflects	the	behaviorally	and	morphologically	mediated	
prey	choice	of	the	predator	when	presented	with	prey	of	many	sizes,	
and	a	second	parameter	controls	the	feeding	kernel	width	(Andersen	

et	al.,	2016).	The	“realized	PPMR”	(i.e.,	PPMR	based	on	ingested	prey)	
of	predators	is	emergent	in	the	models	and	may	change	with	pred‐
ator	size	and	prey	relative	abundance	 (Hartvig	et	al.,	2011).	Direct	
estimation	of	preferred	PPMR	 is	challenging	because	 this	 requires	
knowledge	 of	 realized	 PPMR	 and	 the	 size	 composition	 and	 abun‐
dance	of	encountered	prey	(Floeter	&	Temming,	2003;	Tsai,	Hsieh,	
&	 Nakazawa,	 2016;	 Ursin,	 1973,	 1974).	 Alternatively,	 it	 may	 be	
possible	to	approximate	preferred	PPMR	with	a	simple	offset	from	
realized	PPMR.	 For	 instance,	 simulation	 studies	 suggest	 preferred	
PPMR	may	be	~60%	of	mean	realized	PPMR	(Hartvig	et	al.,	2011).	
This	approximation	has	been	used	to	estimate	preferred	PPMR	from	
diet‐based	estimates	of	realized	mean	PPMR	for	species	in	multispe‐
cies	size	spectrum	models	calibrated	to	real	ecosystems	(Blanchard	
et	al.,	2014).

In	static	size	spectra	models,	species	identity	is	ignored	and	ag‐
gregate	community	biomass	 is	 indexed	by	body	size	 (Blanchard	et	
al.,	2017).	The	models	define	PPMR	as	a	realized	community‐wide	
mean	 that	 is	 constant	 across	 predator	 sizes.	 Consequently,	 PPMR	
sets	the	prey	size	class	that	supports	production	 in	a	given	preda‐
tor	size	class	(e.g.,	Borgmann,	1987;	Sheldon,	Sutcliffe,	&	Paranjape,	
1977;	 Thiebaux	 &	 Dickie,	 1992;	 Thiebaux	 &	 Dickie,	 1993).	 Since	
these	models	characterize	the	transfer	of	energy	from	prey	to	pred‐
ators,	empirical	estimates	of	realized	community‐wide	mean	PPMR	
need	to	account	for	the	energetic	contribution	of	differently	sized	
prey	to	predator	diets.	Estimates	of	realized	community‐wide	mean	
PPMRs,	which	reflect	the	energetic	contribution	of	prey	to	preda‐
tor	diets,	have	been	estimated	from	community‐wide	relationships	
between	body	mass	and	trophic	 level	with	nitrogen	stable	 isotope	
methods	(Al‐Habsi,	Sweeting,	Polunin,	&	Graham,	2008;	Jennings	&	
Blanchard,	2004;	Jennings	&	Mackinson,	2003;	Jennings,	Pinnegar,	
Polunin,	&	Boon,	2001;	Jennings,	Pinnegar,	Polunin,	&	Warr,	2002;	
Reum,	Jennings,	&	Hunsicker,	2015)	and	have	been	used	to	param‐
eterize	 equilibrium	 size	 spectrum	 models	 (Jennings	 &	 Blanchard,	
2004).	Realized	community‐wide	mean	PPMR	influences	food	chain	
length,	 transfer	 efficiency,	 and	 size	 spectrum	 slopes	 (Jennings	 &	
Warr,	 2003;	 Jennings	 et	 al.,	 2001;	 Jennings,	Warr,	 &	 Mackinson,	
2002).	The	few	available	empirical	estimates	of	realized	community‐
wide	mean	PPMR	are	based	on	stable	isotope	analyses	rather	than	
diet	data,	 largely	because	PPMR	estimates	of	 individual	predator–
prey	events	(i.e.,	“individual‐link	PPMR”;	Nakazawa	et	al.,	2011)	are	
rarely	available	for	all	species	 in	a	community	due	to	the	intensive	
sampling	required.

Existing	studies	of	PPMR	based	on	diet	data	have	focused	on	ana‐
lyzing	patterns	in	individual‐link	PPMR	(e.g.,	Barnes	et	al.,	2010;	Brose,	
Jonsson,	et	al.,	2006;	Klecka	&	Boukal,	2013;	Nakazawa	et	al.,	2011;	
Reum	&	Hunsicker,	2012)	which	is	related	to	realized	PPMR	in	dynamic	
size	spectrum	models	 (Hartvig	et	al.,	2011;	Tsai	et	al.,	2016).	At	 the	
level	of	an	individual	predator	i,	the	realized	mean	PPMR	(rnum

i
)	is:

K E Y W O R D S

body	size,	ecosystem,	food	web,	piscivory,	size	spectrum,	trophic	level
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where M	is	the	body	mass	of	the	predator	and	m	is	the	body	mass	
of	individual	j	=	1,	2,	…,	n	prey	observed	in	the	predator	stomach.	
The	mean	of	rnum

i
	for	any	defined	group	of	individual	predators	is	

the	mean	of	the	rnum
i
	values	for	all	predators	in	the	group	weighted	

by	 the	 relative	 abundance	 of	 prey	 observed	 in	 each	 individual	
predator.

The	dependence	of	rnum
i
	on	prey	numerical	abundance,	coupled	

with	 the	 higher	 numbers	 of	 small	 relative	 to	 large	 prey	 in	 size‐
based	food	webs	(Trebilco	et	al.,	2013),	implies	that	rnum

i
	does	not	

reflect	the	contribution	of	different	sizes	of	prey	to	the	energy	in‐
take	of	a	predator	and	is	therefore	less	appropriate	for	generating	
estimates	of	 realized	 community‐wide	mean	PPMR	 in	 static	 size	
spectrum	models.	 This	would	 be	 addressed	 by	 recognizing	 prey	
contributions	to	diet	in	terms	of	biomass	(rbio

i
),	where	rbio

i
	is	calcu‐

lated	as	follows:

where w	is	the	total	biomass	of	all	prey	recovered	from	preda‐
tor	i.	Here,	energy	and	mass	are	assumed	to	be	related	by	a	mass–
caloric	 conversion	 factor	 and	 are	 regarded	 as	 equivalent	 (e.g.,	
Thiebaux	&	Dickie,	1993).	An	equivalent	expression	of	Equation	2	
is	simply	the	predator	mass	divided	by	the	average	body	mass	of	
individual	prey	(i.e.,	“individual	predator	PPMR,”	Nakazawa	et	al.,	
2011).	That	is,

While	rnum
i
	is	the	average	of	individual‐link	PPMRs,	rbio

i
	is	the	ratio	

between	predator	mass	and	the	average	prey	mass.	To	arrive	at	an	
estimate	of	mean	PPMR	that	reflects	the	energetic	contribution	of	
differently	sized	prey	for	a	group	of	 individual	predators,	 the	con‐
stituent	rbio

i
	values	need	to	be	weighted	in	a	manner	that	accounts	

for	differences	in	the	relative	total	biomass	of	prey	in	the	individual	
predators.

To	compare	rbio
i
	and	rnum

i
,	consider	a	1,000‐g	predator	with	stom‐

ach	contents	comprising	two	fish	of	25	g	and	two	krill	of	0.1	g.	The	
corresponding	rbio

i
	and	rnum

i
	values	will	be	79	and	5,020,	respectively,	

with	rbio
i
	 heavily	weighted	downward	by	 the	 larger	prey.	This	 gen‐

eral	pattern	also	holds	 for	 the	weighted	means	of	rbio
i
	 and	rnum

i
	 for	

predators	within	a	given	group.	The	measures	convey	different	but	
complementary	information,	but	rbio

i
	has	received	considerably	less	

attention	in	diet‐based	studies	of	PPMR.
Here,	we	use	diet	data	 for	34	 species	of	 fish	predators	 from	

Alaskan	marine	 ecosystems	 (Livingston	 et	 al.,	 2017)	 to	 estimate	
mean	rnum	and	mean	rbio.	Specifically,	we	used	hierarchical	models	
to	 examine	how	mean	 rnum	 and	mean	 rbio	 changes	with	predator	
body	mass.	Dynamic	size	spectrum	models	suggest	that	mean	rnum 

should	 exhibit	 an	 overall	 positive	 increase	 with	 predator	 body	
mass	and	a	secondary,	nonlinear	scaling	due	to	oscillations	in	the	
relative	 abundances	 of	 small	 and	 large‐bodied	 prey	 (Hartvig	 et	
al.,	 2011).	The	models	predict	oscillatory	behavior	 in	 the	 scaling	
of	 biomass	with	 body	mass,	whereby	 traveling	waves	 propagate	
down	the	size	spectrum,	reflecting	the	growth	of	individuals	into	
successively	 larger	 size	classes	 (Law,	Plank,	&	James,	2009).	The	
relative	encounter	rates	of	small	and	large‐bodied	prey	within	the	
feeding	kernel	of	predators	changes	with	predator	size,	resulting	
in	 nonlinear	 patterns	 in	 community‐wide	 mean	 Rnum	 with	 body	
mass	(Hartvig	et	al.,	2011).	In	cross‐system	studies	using	empirical	
diet	data,	 individual‐link	PPMR	appears	 to	 increase	 linearly	with	
predator	body	sizes	on	log–log	scales	(Barnes	et	al.,	2010;	Brose,	
Jonsson,	 et	 al.,	 2006;	 Nakazawa	 et	 al.,	 2011)	 and	 nonlinearity,	
while	tested	for	infrequently,	has	been	observed	in	one	intensively	
sampled	food	web	(Reum	&	Hunsicker,	2012).	In	addition,	we	eval‐
uated	 how	 predator	 taxonomic	 resolution	 and	 spatial	 resolution	
account	 for	 variance	 in	mean	 rnum	 and	mean	 rbio.	 Previous	 anal‐
yses	 have	 shown	 considerable	 variation	 in	 individual‐link	 PPMR	
across	taxonomic	groupings	(Naisbit,	Kehrli,	Rohr,	&	Bersier,	2011;	
Nakazawa	et	al.,	2011),	but	variation	with	spatial	scale	has	received	
little	 attention.	We	use	 the	 fitted	hierarchical	model	 to	produce	
a	preliminary	estimate	of	 community‐wide	mean	 rbio	 to	compare	
with	realized	community‐wide	mean	rnum	and	describe	implications	
for	food	web	analysis	and	size‐based	food	web	modeling.

2  | MATERIAL S AND METHODS

2.1 | Diet data

Diet	data	used	in	this	study	described	the	stomach	contents	of	fish	
collected	during	the	NOAA	Alaska	Fisheries	Science	Center	(AFSC)	
groundfish	trawl	surveys.	The	surveys	have	been	conducted	annu‐
ally	in	the	Eastern	Bering	Sea	(EBS)	since	1979	and	biennially	or	tri‐
ennially	 around	 the	Aleutian	 Islands	 (AI)	 and	 in	 the	Gulf	of	Alaska	
(GoA)	since	1993	and	1984,	respectively	(Livingston	et	al.,	2017).	At	
each	station,	 fish	brought	on	board	were	sorted	according	to	spe‐
cies	and	sex,	weighed,	enumerated,	and	individuals	were	measured	
for	length	to	the	nearest	cm	to	enable	estimation	of	population	size	
structure	within	survey	strata	 in	each	 region.	The	number	of	 indi‐
viduals	sampled	for	length	for	a	species	was	dependent	on	the	size	
range	of	that	species	in	the	haul,	up	to	a	maximum	of	300	individuals	
(for	details	see	Stauffer,	2004).

Species	 selected	 for	 stomach	contents	 analysis	 varied	 interan‐
nually.	“Core”	commercial	species,	including	walleye	pollock,	Pacific	
cod,	 arrowtooth	 flounder,	 Pacific	 halibut	 in	 all	 three	 ecosystems,	
and	Pacific	Ocean	perch	and	Atka	mackerel	in	the	GoA	and	AI,	are	
sampled	in	every	survey.	Three	to	five	non‐core	species	are	sampled	
in	each	survey	on	a	rotating	basis,	with	the	aim	of	rotating	through	
all	 commercial	or	ecologically	 important	 species	over	a	5‐year	pe‐
riod	 (Livingston	 et	 al.,	 2017).	 Individuals	 chosen	 for	 stomach	 con‐
tent	analysis	were	selected	to	span	a	wide	body	length	range	given	
the	 available	 fish	 (Livingston	 et	 al.,	 2017).	 After	 they	 have	 been	

(1)rnum
i

=
1

n
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i
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individually	weighed	and	measured	their	stomach	contents	are	pre‐
served	 in	10%	buffered	 formalin	 for	subsequent	processing	 in	 the	
laboratory.	All	sampling	is	performed	from	May	to	September,	with	
most	individuals	(92%)	sampled	in	June,	July,	and	August.

In	the	laboratory,	the	stomach	contents	of	each	individual	pred‐
ator	were	sorted	to	the	lowest	possible	taxonomic	level	and	by	life	
history	 stage,	 and	 in	 most	 cases	 were	 individually	 weighed	 and	
measured.	Prey	digestion	level,	based	on	a	visual	assessment	of	the	
percentage	of	intact	prey	body	mass,	was	also	recorded	(Livingston	
et	al.,	2017).	Large	numbers	of	smaller	prey	(e.g.,	copepods,	amphi‐
pods,	euphausiids)	were	not	always	weighed	and	measured	individu‐
ally,	and	aggregate	weights	and	counts	were	recorded.	The	diet	data	
described	 are	 available	 through	 an	online	 database	maintained	by	
NOAA	 Alaska	 Fisheries	 Science	 Center	 (https://access.afsc.noaa.
gov/REEM/WebDietData/DietDataIntro.php).	Additional	details	on	
the	survey	methods	and	diet	collection	protocols	are	available	else‐
where	(Livingston	et	al.,	2017).

Records	 of	 prey	 that	 were	 largely	 digested	 (<75%	 intact)	 were	
excluded.	However,	when	length	data	were	available	for	digested	in‐
dividual	 fish	and	crab	prey,	 the	corresponding	undigested	mass	was	
estimated	using	species‐	and	life	history‐specific	 length–weight	rela‐
tionships	estimated	from	weight	and	length	measurements	of	largely	
undigested	prey	(>75%	intact;	JCP	Reum,	unpublished data).	If	no	indi‐
vidual	prey	body	measurements	were	recorded,	they	were	estimated	
in	one	of	 two	ways.	First,	 if	 total	mass	 and	 count	 information	were	
available	(64%	of	records),	we	calculated	mean	body	mass	by	dividing	
the	total	recorded	weight	by	number	of	individuals.	This	approach	was	
predominately	applied	to	data	for	small‐bodied	invertebrates	(e.g.,	co‐
pepods,	amphipods,	euphausiids).	Second,	if	total	weight	for	each	prey	
species	and/or	life	history	stage	were	recorded	but	count	and	length	
information	were	not	 (19%	of	 records),	we	made	 the	 simplifying	as‐
sumption	that	individual	body	mass	was	the	same	as	mean	mass	calcu‐
lated	from	records	with	both	total	mass	and	count.	This	assumption	is	
similar	to	those	made	in	other	studies	of	prey	size	(e.g.,	Tsai	et	al.,	2016)	
and	was	required	because	there	has	been	 little	focus	 in	many	 large‐
scale	 diet	 studies	 on	 acquiring	 individual	 body	 size	 measurements	
for	 small‐bodied	 prey.	 Although	 authors	 have	 reasonably	 cautioned	
against	using	mean	body	sizes	of	either	predators	or	prey	to	calculate	
PPMR	(Nakazawa,	2015,	2017;	Nakazawa	et	al.,	2011),	we	believe	the	
benefits	outweigh	 the	 risks	 in	our	analysis	because	body	mass	vari‐
ation	 in	the	prey	categories	for	which	we	had	to	estimate	 individual	
body	mass	was	low	(much	less	than	an	order	of	magnitude).	Discarding	
these	records	would	lead	to	a	systematic	underestimation	of	the	im‐
portance	of	small‐bodied	prey	in	predator	diets	(e.g.,	Jacob	et	al.,	2011).

For	 predators,	 individual	 body	 mass	 was	 not	 always	 recorded	
(46%).	In	these	cases,	body	mass	was	estimated	using	species‐spe‐
cific	 length–weight	relationships	fitted	to	 individual	 length–weight	
data	 from	the	survey	 (JCP	Reum,	unpublished data).	Once	the	pre‐
ceding	approaches	had	been	applied	to	the	raw	diet	data,	the	data	
used	for	this	analysis	comprised	records	of	individual	predator	mass,	
classified	by	species	and	the	body	mass	or	estimated	body	mass	of	
the	prey	recorded	 in	their	stomachs,	classified	by	 life	stage	and	to	
the	lowest	possible	taxonomic	resolution.

We	calculated	weighted	means	of	 rnum	and	 rbio	 for	 all	 predator	
species	within	a	defined	body	mass	class	(log10	body	mass	intervals	
of	0.1)	and	subregion	within	the	EBS,	AI,	or	GoA.	Records	were	ag‐
gregated	at	this	level	because	stomach	content	data	are	noisy	given	
the	partly	stochastic	nature	of	prey	encounters	over	short	periods	of	
time	and	because	our	main	goal	was	to	resolve	spatial	and	size‐based	
shifts	in	PPMR	at	the	population	level.	Subregions	within	the	EBS,	AI,	
and	GoA	were	based	on	ecosystem	subregions	and	 fisheries	man‐
agement	zones	and	were	used	to	assess	potential	 spatial	variation	
in	PPMR.

Weighted	 mean	 rnum	 for	 all	 i = 1,	 …x	 predators	 in	 any	 defined	
group	(Rnum)	was	calculated	as	follows:

where N	 is	 the	 sum	of	all	prey	observed	 in	 the	group.	These	esti‐
mates	of	Rnum	thus	account	for	small	variations	in	individual	predator	
body	masses	within	a	body	mass	class	and	are	weighted	by	the	rela‐
tive	number	of	prey	recorded	in	each	individual	predator.	Weighted	
mean	rbio	for	all	predators	in	any	defined	group	(Rbio)	was	calculated	
as	follows:

where

That	is,	pi	is	the	specific	total	prey	mass	(g	prey	g	predator
−1)	ob‐

served	in	predator	i	relative	to	the	sum	of	specific	total	prey	masses	
observed	for	all	predators	in	the	same	group.	The	weighting	based	
on	 specific	 total	 prey	mass	 standardizes	 for	 energetic	 importance	
given	 small	 variations	 in	 individual	 predator	 body	 sizes	within	 the	
predator	 body	 mass	 classes	 and	 extends	 the	 same	 prey	 biomass	
weighting	 approach	 used	 for	 rbio

i
	 (Equation	 2)	 up	 to	 a	 group‐level	

mean	estimate.	The	mean	predator	body	mass	for	individuals	in	each	
predator	body	size	class	was	also	calculated	as	a	weighted	average	
(following	the	same	weighting	method	used	for	Rnum or Rbio)	for	use	
as	a	predictor	variable	in	the	statistical	analysis.	Rnum or Rbio	were	cal‐
culated	only	for	species,	size	class,	and	subregions	with	diet	records	
from	a	minimum	of	ten	individual	predators.

2.2 | Statistical analysis

Rnum	and	Rbio	were	modeled	using	a	linear	mixed	effects	model	with	
a	nested	 random	effects	grouping	 structure	where	 subregion	was	
nested	in	region,	region	within	species,	species	within	families,	and	
families	within	orders.	Because	the	phylogeny	 is	known	for	only	a	
subset	of	predators	in	the	diet	data	set,	taxonomy	was	used	as	a	proxy	
for	phylogeny	(e.g.,	Naisbit	et	al.,	2011).	A	nested	grouping	structure	
was	 used	 to	 account	 for	 taxonomic	 nonindependence	 in	 the	 data	
set	(e.g.,	Blackburn	&	Duncan,	2001;	Sunday,	Bates,	&	Dulvy,	2011)	

(4)Rnum=
∑x

i=1
rnum
i

×
ni

N

(5)Rbio=
∑x

i=1
rbio
i

×pi

(6)pi=
wi∕Mi

∑

wi∕Mi

https://access.afsc.noaa.gov/REEM/WebDietData/DietDataIntro.php
https://access.afsc.noaa.gov/REEM/WebDietData/DietDataIntro.php
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and	because	we	sought	to	explicitly	estimate	the	proportion	of	vari‐
ance	in	Rnum	and	Rbio	associated	with	each	taxonomic	level	(Reum	&	
Marshall,	2013).	The	family	and	order	of	each	predator	was	obtained	
from	 the	 Integrated	Taxonomic	 Information	System	 (www.itis.gov;	
accessed	March	2017).	The	fixed	effects	terms	included	a	linear	and	
quadratic	predator	body	mass	predictors.	At	each	model	level,	vari‐
ance	components	corresponding	to	the	intercepts	and	slopes	for	the	
linear	and	quadratic	predictor	variables	were	estimated.	The	model	
included	a	quadratic	body	mass	term	to	account	for	potential	non‐
linear	relationship	between	Rnum or Rbio	and	predator	body	mass	as	
suggested	by	other	empirical	studies	(Reum	&	Hunsicker,	2012)	and	
theoretical	models	(Hartvig	et	al.,	2011).	Preliminary	analyses	indi‐
cated	that	centering	and	scaling	the	linear	and	quadratic	log10‐trans‐
formed	predator	body	mass	predictor	variables	obviated	the	need	to	
estimate	the	full	variance–covariance	matrix	for	the	random	effects	
(Zuur,	2009).	Consequently,	at	each	level	of	nesting,	the	random	in‐
tercept	and	slope	coefficients	for	the	linear	and	quadratic	predictor	
variables	were	assumed	uncorrelated	and	normally	distributed.

Prior	 to	model	 fitting,	 the	 response	variables	 (Rnum	 and	Rbio)	
were log10‐transformed	to	better	conform	to	assumptions	of	nor‐
mality.	The	models	were	fitted	under	a	Bayesian	framework	using	
the	statistical	library	“brms”	(Bürkner,	2017)	for	the	“R”	software	
program	 v.	 3.3	 (R	 Development	 Core	 Team,	 2015).	 The	 library	
utilizes	the	software	package	“Stan”	which	employs	Hamiltonian	
Monte	 Carlo	 and	 its	 extension,	 No‐U‐Turn	 Sampler.	 The	 algo‐
rithms	 produce	 samples	 that	 are	 much	 less	 autocorrelated	 and	
are	generally	more	efficient	at	 reaching	convergence	than	more	
commonly	used	algorithms	(Bürkner,	2017).	For	the	fixed	effects	
parameters,	normal	prior	distributions	were	used	with	a	mean	and	
variance	of	0	and	3,	respectively.	A	half‐Cauchy	prior	was	placed	
on	 the	 standard	deviation	of	 each	 random	effect,	with	 location	
and	 scale	 parameters	 set	 to	 0	 and	 10,	 respectively	 (Gelman,	
2006).	A	half	Student	t	prior	was	used	for	the	residual	variance,	
with	shape	and	scale	parameters	equal	to	0.001	(Gelman,	2006).	
Three	MCMC	chains	were	run	in	parallel	for	1,550	simulation	it‐
erations	with	a	burn‐in	of	50	 iterations.	A	thinning	 interval	of	3	
was	 selected	 to	 reduce	 autocorrelation	 in	 the	 posterior	 draws,	
resulting	in	1,500	posterior	distribution	samples	of	the	model	pa‐
rameter	estimates	from	which	median	parameter	estimates	were	
calculated,	and	95%	highest	posterior	density	(HPD)	credible	in‐
tervals	were	 constructed.	 To	 ensure	 convergence,	 traceplots	 of	
the	 chains	 and	diagnostic	 values	

�

√

̂R

�

	were	 visually	 inspected,	
where	values	close	to	1	(<1.2)	suggest	convergence	(Gelman	et	al.,	
2014).	With	 the	 fitted	models,	we	examined	 the	 relative	 impor‐
tance	of	each	level	of	nesting	in	terms	of	prediction	improvement.	
This	was	performed	by	evaluating	the	Bayesian	R2	or	“explained	
variance”	 (Gelman	&	Pardoe,	2006)	of	 the	model	using	only	 the	
fixed	 effects	 coefficients	 for	 prediction	 and	 then	 with	 addi‐
tional	 random	 effects	 coefficients	 associated	with	 successively	
lower	levels	of	nesting.	The	Rnum	and	Rbio	values	submitted	to	the	
analysis,	 along	with	R	code	describing	 the	 statistical	model,	 are	
electronically	archived	(Reum	2018,	https://doi.org/10.6084/m9.
figshare.7210046.v2).

2.3 | Community‐wide mean PPMR

Community‐wide	mean	PPMRs	for	the	EBS,	AI,	and	GoA	(i.e.,	mean	
PPMR	 for	 the	 sampled	 communities)	were	 calculated	 from	preda‐
tor	species,	size	class,	and	subregion	Rbio	as	follows.	First,	the	fitted	
hierarchical	model	was	used	to	predict	Rbio	(̂Rbio)	across	size	classes	
and	 subregions	 for	 each	 predator	 species.	 For	 clarity,	 we	 use	 the	
subscripts	a,	b,	 c,	 and	d	 to	 index	 size	 class‐,	 species‐,	 region‐,	 and	
subregion‐specific	estimates.	Second,	for	each	size	class	and	preda‐
tor	 species,	 region‐level	 estimates	 (Rbio

a,b,c
)	 were	 obtained	 through	

weighted	averaging	of	subregion‐level	predicted	values.	For	d	=	1,	…	
y	subregions,	Rbio

a,b,c
	was	calculated	following:

where qa,b,c,d	 represent	 the	 proportional	 contribution	 of	 predator	
species	to	total	community	biomass	within	a	given	size	class,	region,	
and	subregion:

B	 is	 the	 time‐averaged	 biomass	 density	 (kg/km)	 for	 a	 given	
body	mass	class,	predator	species,	region,	and	subregion	based	on	
bottom	trawl	survey	data.	Time‐averaged	biomass	densities	were	
used	in	the	calculation	because	diet	data	were	also	pooled	across	
years.

Third,	for	b	=	1,	…	z	predator	species,	community‐wide	Rbio	esti‐
mates	for	each	predator	size	class	and	region	(Rbio

a,c
)	were	calculated	

as	follows:

where qa,b,c	 is	 the	proportional	contribution	of	predator	species	to	
total	community	biomass	within	a	given	size	class	and	region:

The	community‐wide	mean	Rbio	was	resolved	for	each	preda‐
tor	body	mass	class	to	evaluate	potential	size‐dependent	nonlin‐
earities.	If	insufficiency	of	diet	data	precluded	subregion‐specific	
predictions	(that	is,	 ̂Rbio

a,b,c,d
	in	Equation	7),	then	predictions	gener‐

ated	for	the	region	were	used	instead	( ̂Rbio
a,b,c
).	 If	region‐level	pre‐

dictions	were	not	 feasible,	 then	predictions	were	generated	for	
the	 species	 ( ̂Rbio

a,b
).	 Overall,	 subregion	 to	 species‐level	 predicted	

Rbio	values	were	estimated	for	90%	to	95%	of	the	fish	biomass	in	
each	region.	For	the	remaining	5%	to	10%	of	fish	biomass,	family‐
level Rbio	was	estimated.	Uncertainty	described	by	the	posterior	
distributions	from	the	hierarchical	model	was	propagated	to	the	
community‐wide	mean	Rbio	estimates.	For	comparative	purposes,	
we	 repeated	 the	 preceding	methods	with	 the	Rnum	 hierarchical	
model.

(7)Rbio
a,b,c

=
∑y

d=1

̂Rbio
a,b,c,d

×qa,b,c,d

(8)qa,b,c,d=
Ba,b,c,d

∑y

d=1
Ba,b,c,d

(9)Rbio
a,c

=
∑z

b=1
Rbio
a,b,c

×qa,b,c

(10)qa,b,c=
Ba,b,c

∑z

b=1
Ba,b,c

http://www.itis.gov
https://doi.org/10.6084/m9.figshare.7210046.v2
https://doi.org/10.6084/m9.figshare.7210046.v2


206  |     REUM Et al.

3  | RESULTS

Diets	from	170,689	individual	predators	were	included	in	the	analy‐
sis,	 from	34	 fish	 species	 in	 10	 families	 and	 six	 orders	 (Supporting	
Information	 Table	 S1).	 Collectively,	 fish	 predator	 body	 masses	
spanned	 ~4	 orders	 of	magnitude	 (Figure	 1).	Rnum	 values	were	 ap‐
proximately	an	order	of	magnitude	higher	 than	Rbio,	but	 individual	
values	were	up	to	four	orders	of	magnitude	higher	 (Figure	2).	Low	
Rbio	and	Rnum	values	were	generally	associated	with	predator	diets	
containing	a	high	proportion	of	fish	(Figure	2).

For	both	Rbio	and	Rnum	models,	MCMC	chains	converged,	were	
well‐mixed,	and	exhibited	low	autocorrelation	(<0.05).	Posterior	pre‐
dictive	checks	and	visual	inspection	of	the	residuals	and	fitted	values	
indicated	that	the	data	were	adequately	described	by	the	models.

Overall,	Rbio	tended	to	vary	with	predator	body	mass	in	a	nonlin‐
ear,	dome‐shaped	manner,	but	the	fixed	effect	slope	coefficients	for	
both	the	linear	(median	and	95%	HPD	credible	interval:	0.02	and	−0.37	
to	0.36)	and	quadratic	(−0.16	and	−0.46	to	0.20)	predator	body	mass	
predictors	did	not	differ	from	zero	(Figure	3).	Order‐	and	family‐level	
relationships	were	relatively	similar	to	the	fixed	effect	relationships,	
but	variation	at	the	species	level	was	substantially	greater	(Figure	3).	
Across	species	and	size	classes,	Rbio	ranged	from	approximately	101.5–
104.5	 (32–31,000)	 and	 within	 a	 single	 intermediate	 predator	 body	
mass	class	(102.5	g)	Rbio	values	spanned	approximately	two	orders	in	
magnitude	(Figure	3).	Species	and	size	classes	that	fed	heavily	on	fish	
generally	showed	the	lowest	mean	Rbio	values	(Figure	3).	Linear	and	
quadratic	 slope	coefficients	differed	 from	zero	 for	 three	and	seven	
species,	respectively	(Supporting	Information	Figures	S1	and	S2).	The	
predicted	range	in	species	Rbio	values	increased	relatively	little	with	
inclusion	of	region‐	and	subregion‐level	coefficients	(Figure	3).

Mean	predicted	Rnum	was	higher	than	Rbio	and	tended	to	increase	
more	 linearly	with	predator	body	mass,	but	 the	 fixed	effect	 linear	
(median	and	95%	HPD	credible	interval:	0.18	and	−0.26	to	0.57)	and	
quadratic	slopes	(−0.12	and	−0.47	to	0.57)	also	did	not	differ	from	
zero	(Figure	3).	Variation	in	predicted	Rnum	was	similar	to	that	in	Rbio 
at	order‐	and	family‐levels	and	species‐level	variation	was	also	nota‐
bly	higher,	ranging	from	~102–104.8	 (100–63,000;	Figure	3).	Linear	
and	quadratic	slope	coefficients	differed	from	zero	for	four	and	six	

F I G U R E  1  Overview	of	body	masses	of	individual	fish	predators	
sampled	from	Alaskan	marine	ecosystems.	Open	gray	circles:	body	
mass	of	individual	predators;	black	closed	circles:	mean	body	mass	
of	all	individual	predators

F I G U R E  2  Comparison	of	Rbio	and	
Rnum	for	predators	within	the	same	body	
mass	class,	species,	and	subregion.	Color	
code	corresponds	to	the	proportion	of	
fish	in	diets	by	(a)	biomass	and	(b)	number:	
yellow,	<10%;	light	blue	10%–50%;	
dark	blue	>50%.	Black	diagonal	line	
corresponds	to	the	1:1	line
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species,	respectively	(Supporting	Information	Figures	S1	and	S2).	As	
for	Rbio,	 inclusion	 of	 region‐	 and	 subregion‐level	 coefficients	 only	
modestly	increased	the	range	of	predicted	values	(Figure	3).

Evaluation	 of	 Bayesian	 R2	 also	 highlighted	 the	 relative	 impor‐
tance	 of	 species‐level	 coefficients	 in	 accounting	 for	 variation	 in	
the	data	(Figure	4).	For	Rbio,	the	fixed	effect	“explained”	only	10.4%	
of	 variance,	 with	 inclusion	 of	 order‐	 and	 family‐level	 coefficients	
increasing	 this	 to	 just	 15.2%	 and	 24.6%,	 respectively.	 But,	 at	 the	
species	level,	R2	improved	substantially	to	69.5%.	Further	including	
region‐	 and	 subregion‐level	 coefficients	 only	 added	 another	 0.3%	
and	5.7%	to	R2,	respectively.	Similar	changes	in	R2	with	level	of	anal‐
ysis	were	apparent	for	the	Rnum	model	(Figure	4).

Relationships	between	community‐wide	mean	Rbio	and	predator	
body	mass	were	slightly	domed	shaped	in	all	three	regions,	with	peak	
values	occurring	at	a	predator	body	mass	near	103	g	(Figure	5a–c).	
The	decrease	in	community‐wide	mean	Rbio	at	larger	predator	sizes	
coincided	with	higher	proportions	of	 fish	 (>0.20)	 in	predator	diets	
(Figure	5d–f).	Uncertainty	in	the	community‐wide	Rbio	increased	to‐
ward	the	upper	and	lower	extremes	of	the	predator	body	size	ranges	
(Figure	5a–c),	partly	because	of	higher	prediction	uncertainty	result‐
ing	from	lower	data	coverage	at	the	predator	body	mass	extremes.	
Typically,	 median	 community‐wide	mean	Rnum	was	 0.5–1	 order	 of	
magnitude	 higher	 than	 community‐wide	mean	Rbio	 across	 regions,	
but	showed	a	similar	curvilinear	pattern	(Figure	5a–c).

4  | DISCUSSION

The	metrics	Rbio	and	Rnum	provide	complementary	insights	into	preda‐
tor–prey	 interactions	and	 the	PPMR.	Results	 show	 that	Rbio	<	Rnum,	

consistent	with	the	numeric	dominance	of	small	prey	in	predator	diets,	
and	implying	that	the	metrics	are	not	substitutable.	When	developing	
models	based	on	bulk	energy	flux	or	comparing	diet	and	stable	 iso‐
tope‐based	measures	of	realized	PPMR,	Rbio	will	be	a	more	appropriate	
measure	of	PPMR.	When	calibrating	preference	PPMRs	 in	dynamic	
models,	then	Rnum	will	be	a	more	appropriate	measure	of	PPMR.	For	
the	 Alaskan	 food	webs,	 community‐wide	mean	Rnum	 exceeded	Rbio 
by	0.5–1	orders	of	magnitude.	Consequently,	equilibrium	predictions	
of	 food	 chain	 length	 and	 the	 unexploited	 size	 spectrum	 slope	 (e.g.,	
Jennings	 &	 Blanchard,	 2004;	 Jennings	 &	Mackinson,	 2003)	 will	 be	
under	and	over‐estimated,	respectively,	if	community‐wide	mean	Rnum 

F I G U R E  3  Top	panel:	Predicted	relationships	between	log10	predator	body	mass	and	mean	R
bio	for	Alaskan	marine	fish	predators	

according	to	order,	family,	species,	region,	and	subregion.	Color	code	corresponds	to	the	average	proportion	of	fish	in	predator	diets	by	
weight:	yellow,	<10%;	light	blue,	10%–50%;	dark	blue	>50%.	Bottom	panel:	Predicted	relationships	between	log10	predator	body	mass	and	
mean	Rnum.	Color	code	corresponds	to	the	average	numerical	proportion	of	fish	in	predator	diets.	Black	line	corresponds	to	mean	body	mass	
relationship	(fixed	effect).	A	horizontal	dashed	gray	line	is	overlaid	at	Rbio	and	Rnum = 103	to	aid	comparisons

F I G U R E  4  Bayesian	explained	variance	(R2)	of	the	model,	
sequentially	adding	in	higher	levels	of	nested	random	effects.	Error	
bars	indicate	the	95%	highest	posterior	density	credible	intervals
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is	used	in	place	of	Rbio.	For	instance,	selecting	a	PPMR	of	104	instead	of	
103	increases	the	predicted	unexploited	biomass	of	large	(104–104.1	g)	
relative	 to	 small	 (10–101.1	g)	 predators	 by	 ~12%	 and	 decreases	 the	
predicted	relative	trophic	 level	of	10	kg	predators	by	0.25	(Jennings	
&	Blanchard,	2004;	Reum	et	al.,	2015).	The	consistent	difference	 in	
Rbio	and	Rnum	at	multiple	levels	of	aggregation	underscore	the	need	to	
select	the	form	that	best	matches	how	PPMR	is	conceptualized	within	
a	particular	size‐based	modeling	framework.

Both	Rbio	and	Rnum	were	related	to	predator	body	mass	and	vari‐
ation	emerged	primarily	at	the	species	level.	This	suggests	that	indi‐
viduals	of	the	same	size	are	likely	not	always	interchangeable	across	
species	and	that	changes	in	species	composition	will	modify	commu‐
nity‐wide	mean	PPMR.	From	an	exploratory	perspective,	this	further	
suggests	that	predator	traits	expressed	primarily	at	the	species	level	
(e.g.,	 habitat	 preferences,	 morphology,	 foraging	 behavior),	 rather	
than	Family	or	Order,	are	likely	to	have	the	largest	influence	on	prey	
selection	patterns	and	thus	PPMR.	In	contrast,	region	and	subregion	
explained	substantially	less	variation	in	PPMR,	which	indicates	spa‐
tially	structured	variables	that	relate	prey	availability	or	vulnerability	
(e.g.,	temperature,	benthic	substrate	type)	may	have	only	a	relatively	
minor	influence	on	PPMR,	at	least	over	the	spatial	scales	considered	

in	the	analysis.	Low	relative	variation	in	PPMR	over	space	suggests	
species	 may	 be	 usefully	 aggregated	 into	 functional	 groups	 partly	
based	on	PPMR	(e.g.,	Hahm	&	Langton,	1984,	Hansen,	Bjornsen,	&	
Hansen,	1994)	for	the	purpose	of	developing	dynamic	trait‐based	or	
functional	size	spectrum	models	of	these	systems	(Andersen	et	al.,	
2016;	Blanchard	et	al.,	2017).

A	 strength	of	 this	 study	 is	 that	PPMR	was	defined	 for	 region‐
ally	discrete	communities	which	would	also	be	defined	as	commu‐
nities	 for	 developing	 size	 spectrum	 models.	 A	 general	 prediction	
of	 dynamic	 size	 spectrum	 models	 is	 that	 community‐wide	 mean	
Rnum	(or	Rbio)	will	vary	with	predator	body	mass	in	a	nonlinear	man‐
ner	 over	 body	mass	 ranges	 of	 approximately	 three	 to	 four	 orders	
of	 magnitude	 but	 exhibit	 an	 overall	 increasing	 trend	 over	 larger	
ranges	 (Hartvig	et	al.,	2011).	 Interestingly,	a	 roughly	dome‐shaped	
relationship	 emerged	 in	 all	 three	 regions	 for	 predators	 spanning	
approximately	four	orders	of	magnitude,	similar	to	observations	 in	
one	other	system	(Reum	&	Hunsicker,	2012),	which	lends	support	to	
these	predictions.	However,	it	is	unclear	to	what	extent	the	trends	
observed	here	can	be	extrapolated	or	are	influenced	by	the	predator	
sizes	and	species	included	in	the	analysis.	In	stable	isotope	studies,	
nonlinear	 relationships	 between	 community‐wide	 mean	 Rbio	 and	

F I G U R E  5   (a–c)	Community	Rbio	and	
Rnum	for	Aleutian	Islands,	Eastern	Bering	
Sea,	and	Gulf	of	Alaska.	Solid	gray	lines	
indicate	median	Rbio;	gray	band	indicates	
the	5th	and	95th	uncertainty	intervals.	
Black	solid	line	corresponds	to	median	
Rnum;	dashed	lines	indicate	the	5th	and	
95	uncertainty	intervals.	Uncertainty	
is	based	on	prediction	errors	from	
the	fitted	species	and	region‐specific	
Rbio or Rnum	body	mass	relationships.	
(d–f)	Proportional	contribution	of	fish	to	
predator	diets	at	the	community	level	by	
biomass	(gray	line)	and	numbers	(black).	
Diet	proportions	are	weighted	according	
to	predator	biomass
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body	size	are	implied	by	nonlinear	body	size–trophic	level	relation‐
ships,	and	this	has	been	observed	in	at	least	one	plankton	food	web	
(Chang	et	al.,	2014).	Despite	the	conceptual	consistency	with	diet‐
based	estimates	of	community‐wide	mean	Rbio,	nonlinear	 relation‐
ships	from	fish‐dominated	communities	have	not	been	apparent	in	
stable	isotope	data	(e.g.,	Reum	et	al.,	2015),	although	the	statistical	
power	to	resolve	subtle	nonlinearity	may	be	low	given	other	sources	
of	uncertainty	(Reum	et	al.,	2015).	In	general,	trends	in	PPMR	with	
body	mass	and	their	spatial	and	temporal	ubiquity	in	food	webs	are	
not	well	understood	and	are	perhaps	best	addressed	by	a	study	that	
applies	a	number	of	the	available	techniques	to	the	same	community	
over	the	same	time‐period.

For	dynamic	size	spectrum	models,	direct	estimation	of	the	pre‐
ferred	PPMR	of	predators	requires	information	on	diet	composition	
as	well	as	the	size	composition	and	abundance	of	encountered	prey	
(Hartvig	et	al.,	2011;	Tsai	et	al.,	2016).	Given	the	complexities	of	esti‐
mating	the	latter	quantities	in	the	field,	preferred	PPMR	is	measured	
more	precisely	 in	experiments	 (e.g.,	Ursin,	1973),	but	 these	closed	
environments	are	 likely	 to	 introduce	artifacts	 (e.g.,	poor	 represen‐
tation	of	predator	and	prey	refuges,	effects	of	changing	light	quality	
and	turbidity,	etc.).	Moreover,	such	experiments	would	need	to	be	
conducted	with	many	species	and	body	size	classes	to	provide	pref‐
erence	functions	which	could	realistically	be	applied	to	communities.	
A	more	 feasible	approach	might	entail	estimating	preferred	PPMR	
parameters	within	size	spectrum	models.	To	calibrate	multispecies	
size	spectrum	models	to	real	food	webs,	parameters	controlling	the	
scaling	 of	 species	 abundances	 are	 estimated	 using	 biomass	 data	
(Blanchard	et	al.,	2014),	and	the	approach	could	be	easily	extended	
to	estimate	preferred	PPMR	by	fitting	to	Rnum	data	as	well.	Such	es‐
timates,	however,	may	have	potential	biases	based	on	how	well	Rnum 
values	derived	from	stomach	content	data	accurately	represent	the	
average	prey	composition	of	predators.

Similar	 to	other	analyses	of	PPMR	based	on	stomach	contents	
(e.g.,	Brose,	Jonsson,	et	al.,	2006,	Barnes	et	al.,	2010),	our	study	has	
important	caveats.	Our	analysis	used	prey	collected	from	stomach	
samples	that	 in	some	instances	were	partially	digested,	potentially	
upwardly	biasing	estimates	of	Rbio	and	Rnum.	We	attempted	to	min‐
imize	 the	 level	 of	 bias	by	estimating	undigested	prey	masses	with	
length	 data	when	possible	 and	 limiting	 analysis	 to	 prey	 that	were	
largely	intact	(>75%).	In	addition,	we	assumed	that	the	relative	abun‐
dances	 of	 differently	 sized	 prey	 in	 predator	 stomachs	 are	 propor‐
tional	to	the	rates	at	which	they	are	consumed.	If	digestion	rates	are	
slower	 for	 large‐bodied	prey	 compared	 to	 small‐bodied	prey,	 they	
may	be	overrepresented	 in	 the	diet	data,	artificially	 lowering	both	
Rbio	and	Rnum.	Prey	digestion	rates	may	also	vary	by	prey	type	and	
body	composition,	but	in	the	absence	of	information	on	species‐spe‐
cific	prey	digestion	rates	 it	 is	difficult	to	 identify	the	magnitude	of	
these	error	sources.	While	nitrogen	stable	isotope	estimates	of	com‐
munity‐wide	mean	Rbio	can	avoid	some	of	these	issues	by	integrating	
assimilated	prey	over	longer	time	periods,	they	are	also	sensitive	to	
assumptions	 regarding	 the	 trophic	 fractionation	of	nitrogen	stable	
isotopes	(Jennings,	2005;	Reum	et	al.,	2015).	Finally,	our	analysis	was	
limited	 to	 fish	predators	which	 are	gape‐limited	and	 that	 spanned	

~4	orders	of	magnitude	in	body	mass.	The	PPMR	patterns	observed	
for	this	groups	may	not	be	indicative	of	patterns	in	other	taxonomic	
groups	or	body	size	classes.

Empirical	estimates	of	community‐wide	mean	Rbio	are	needed	to	
parameterize	size‐based	food	web	models	when	realized	PPMR	is	an	
input	(e.g.,	Borgmann,	1987;	Jennings	&	Blanchard,	2004;	Jennings	&	
Mackinson,	2003),	and	Rnum	is	needed	to	calibrate	or	test	model	pre‐
dictions	in	cases	where	preferred	PPMR	is	an	input	(e.g.,	Blanchard	et	
al.,	2014;	Hartvig	et	al.,	2011).	Our	analysis	adds	to	a	body	of	work	that	
has	sought	to	clarify	how	PPMR	is	defined	within	different	size‐	and	
species‐based	food	web	modeling	paradigms	(e.g.,	Gilljam	et	al.	2011;	
Nakazawa,	2015;Nakazawa,	2017;	Nakazawa	et	al.,	2011;	Tsai	et	al.,	
2016)	and	highlights	the	need	to	collect	and	aggregate	empirical	diet	
data	at	appropriate	scales	with	regard	to	size	spectrum	theory.	The	
quality	and	size	of	our	data	set	 (>106	 individual	predators)	 is	among	
the	largest	available	for	any	region,	and	a	future	research	priority	is	
to	develop	predictive	models	of	Rbio	and	Rnum	based	on	predator	traits	
such	as	feeding	mode,	morphology,	or	habitat	preference	(e.g.,	Gravel,	
Poisot,	Albouy,	Velez,	&	Mouillot,	2013).	Given	the	intensive	sampling	
required	to	assemble	diet	data	sets,	such	models	would	be	particu‐
larly	valuable	 for	parameterizing	multispecies	size	spectrum	models	
in	data‐poor	systems.	That	said,	the	implications	of	species‐level	vari‐
ation	in	PPMR	for	community	structure,	productivity,	and	system	re‐
sponses	to	pressures	such	as	fishing	are	only	beginning	to	be	explored	
(e.g.,	Law	et	al.,	2016)	and	also	warrant	further	study.
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